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Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CYBER). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Executive summary 
There is a common misconception that to make a classically secure cryptosystem quantum-safe, it suffices to replace its 
underlying computational-hardness assumptions with "quantum-hard" assumptions. However, this is not always the 
case. The present document provides an overview of the impact of quantum computing on cryptographic security 
proofs; it illustrates how for certain classes of cryptographic systems the security proofs need to be adapted, for which 
classes this has already successfully been done, and what the practical implications of these adaptations are. 

The present document is meant for cryptographic experts who want to get insight into practical changes that need to be 
made to existing systems to make those systems quantum-safe, or who want to understand the fundamental challenges 
in proving security against a quantum adversary. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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Introduction 
The advent of a cryptographically-relevant quantum computer (or CRQC for short) will severely impact most currently-
used cryptographic systems. Notably, a CRQC can factor integers and compute discrete logarithms in polynomial time, 
thereby breaking systems based on the hardness of these problems. 

However, simply replacing these problems by others which are (believed to be) impervious even to a quantum computer 
does not completely solve the issue. This is due to the fact that many security proofs of cryptographic systems are no 
longer valid in the presence of a quantum-capable attacker; while this does not automatically imply that the affected 
systems would be broken by a quantum computer, it does raises questions on the exact security guarantees that the 
systems can provide. 

The present document analyses the impact of quantum computers on cryptographic security proofs, describing the 
current knowledge on the topic and the expected effects on security. 

  



 

ETSI 

ETSI TR 103 965 V1.1.1 (2024-10) 7 

1 Scope 
The present document is intended to provide an overview of the impact of quantum computing on the security proofs of 
several cryptographic protocols. It focuses on cryptographic protocols that can be run on classical hardware; further, it 
discusses which security proofs are invalidated, or otherwise affected, in the presence of an attacker with access to a 
CRQC, and discusses for each affected system whether: 

a) an alternative proof has been found that does provide security against quantum attacks, but possibly with a 
reduced security level; 

b) no alternative proof has been found, but security is expected to still hold; 

c) the cryptographic system is expected to be broken by quantum attacks, in a way which is not captured by the 
classical security proof, although no concrete quantum attack exists yet; or 

d) a concrete quantum attack that breaks security, in a way which is not captured by the classical proof, is 
available. 

In terms of the security proofs and problems under consideration, the present document includes the following: 

1) The quantum random oracle model, and in particular its usage in: 

a) The Fiat-Shamir transformation. 

b) The Fujisaki-Okamoto transformation. 

2) The rewinding technique for zero-knowledge proof systems. 

3) The binding property of commitment schemes. 

4) The universal-composability framework. 

5) The indifferentiability framework. 

6) Security proofs of pseudo-random functions. 

In addition to presenting the theoretical developments on these topics, the present document elaborates on the practical 
consequences. In some cases, the security of classically secure schemes is uncertain in the face of a quantum adversary. 
In other cases, the security of the scheme holds, but the parameters need to be adjusted to retain the same level of 
security. 

NOTE: The present document does not discuss so-called "quantum-annoying" schemes, which still base their 
security on computational problems that can be solved (relatively) efficiently by a quantum computer, but 
force such an attack to perform a high number of operations, hence making it impractical for the expected 
first generation of quantum computers. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 
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2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee 
their long-term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

asymmetric cryptography: cryptographic system that utilizes a pair of keys, a private key known only to one entity, 
and a public key which can be openly distributed without loss of security 

cryptographic hash function: function that maps a bit string of arbitrary length to a fixed length bit string (message 
digest or digest for short) with specific mathematical properties 

NOTE: See clause 5.3 for details. 

cryptographic key: binary string used as a secret by a cryptographic algorithm 

EXAMPLE: AES-256 requires a random 256-bit string as a secret key. 

cryptographic protocol: system of rules that allows two or more communicating entities to reach a security-related 
goal using cryptographic algorithms 

entity: person, device or system 

key encapsulation mechanism: method to secure the establishment of a cryptographic key for transmission using 
public key cryptography 

message digest/digest: fixed-length output of a cryptographic hash function over a variable length input 

private key: key in an asymmetric cryptographic scheme that is kept secret 

public key: key in an asymmetric cryptographic scheme that can be made public without loss of security 

public-key cryptography: See asymmetric cryptography. 

quantum-safe: resistant to quantum attacks 

random oracle: theoretical black box that responds to every unique query with a uniformly random selection from the 
set of possible responses, with repeated queries receiving the same response 

security level: measure of the strength of a cryptographic algorithm 

NOTE: If 2� operations are required to break the cryptographic algorithm/scheme/method, then the security level 
is �. Sometimes also referred to as bit-strength. 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

� ≫ � Informal notation to denote that a quantity � is much larger than another quantity �. 
� ≈ � Informal notation to denote that a quantity � is approximately as large as another quantity �. 
� = �(�) Given two function �(�) and ���	, taking as input non-negative integers, there exists a positive 

constant 
 and a positive number �′ such that ���	 ≤ �(�) for all � ≥ �′. 
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3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

CBC Cipher Block Chaining 
CRQC Cryptographically relevant quantum computer 
DEM Data-encapsulation mechanism 
EUF-CMA Existential UnForgeability under Chosen Message Attack 
FO Fujisaki-Okamoto 
GMAC Galois Message Authentication Code 
IND-CCA INDistinguishability under Chosen Ciphertext Attack 
IND-CPA INDistinguishability under Chosen Plaintext Attack 
ITM Interactive Turing Machine 
KEM Key-encapsulation mechanism 
MAC Message Authentication Code 
MPC Multi-Party Computation 
OAEP Optimal Asymmetric Encryption Padding 
OW-CPA One-Way under Chosen Plaintext Attack 
OW-PCA One-Way under Plaintext Checking Attacks 
PKE Public Key Encryption 
PMAC Parallelizable Message Authentication Code 
PRF Pseudo-Random Function 
QPRF Quantum Pseudo-Random Function 
Q-ROM Quantum random-oracle model 
ROM Random-oracle model 
RSA Rivest, Shamir, Adleman 
UC Universal Composability 
ZKPoK Zero-Knowledge Proof of Knowledge 

4 Cryptographic Security Proofs and Quantum 
Attackers 

Reasoning about the security of a cryptographic primitive is not a trivial task. A naive way to design a cryptographic 
system would be to go through the following steps: first, create a functional design for a system and deploy it. Then 
wait until someone finds an attack that breaks the system; at this point, change the system to prevent said attack or 
change the recommended parameters and wait for a new attack. If no new attack is published in reasonable time, one 
might assume that the cryptographic scheme is secure. However, it is unclear what a "reasonable time" should be: 
historically, there are for instance cryptographic systems that were broken after five years of silence, such as those used 
in the PKCS#1 family of standards [i.1]. More precisely, PKCS#1 version 1.5 [i.1] contained a padding protocol for 
RSA that was standardized in 1993, but it was not until 1998, that a chosen-ciphertext attack was found by 
Bleichenbacher [i.2]. Therefore, this approach is risk-prone and not satisfactory. 

To make more meaningful statements about the security of a scheme, a definition of security needs to be in place. Such 
a definition should specify how an attacker is modelled and what the objective of the attacker is. The general aim is to 
show that an hypothetical attacker that can break the system can also solve some well-studied computational problem 
with a comparable effort. Under the assumption that such a computational problem is intractable (due to years of study 
and scrutiny of its hardness), one can therefore rule out the existence of such an hypothetical attacker. In other words, 
the security of the system is reduced to the hardness of a mathematical problem. More formally, such a reduction is 
proved as follows: 

• Assume there exists a probabilistic polynomial-time algorithm � (modelling a hypothetical attacker) that can 
compromise a certain security goal of the scheme in time �, given certain powers. Here � is polynomial in �, 
the desired security level of the scheme (typically chosen to be equal to 128 or 256). 

• Create an algorithm � = ���	 (possibly probabilistic) that, given �, can solve the mathematical problem in 
time ���	 for some function �. 
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This is called a security reduction. If the powers of an attacker are correctly modelled, such a reduction implies that the 
attacker has to attack either the implementation of the scheme or the underlying mathematical assumption to 
compromise the security goal. Ideally, ���	 ≈ �, in which case it is shown that breaking the cryptographic system takes 
approximately as much time as solving the mathematical problem. By contrast, if ���	 ≫ �, then breaking the 
cryptographic system might be significantly easier than solving the mathematical problem. How close ���	 is to � is 
referred to as the tightness of the reduction. Basing the security of a cryptographic scheme on a non-tight reduction, 
e.g. ���	 = ��, might result in overly conservative parameter choices and impractical cryptographic protocol 
instantiations. However, these reductions do show that there is no structural weakness in the cryptographic system. 

This is the reason that modern cryptographic systems generally base their security on the assumed hardness of some 
computational problem. When considering attackers that can use a CRQC, a general misconception is that simply 
swapping the computational problems underlying a cryptographic system for "quantum-hard" computational problems 
(i.e. problems that are considered intractable even for a quantum computer) is enough to make the system quantum-safe. 
Unfortunately, this is not always true. As discussed above, all mathematical proofs of security have to specify the 
powers of the attacker. A quantum attacker has properties that are not modelled in classical proofs. Therefore, in 
addition to using quantum-hard computational problems, the proofs themselves often need to be modified as well. 

Modifying a security proof in such a way that it accommodates for quantum attackers is often not trivial, and sometimes 
no such proof is available. While this does not directly mean that the corresponding scheme is broken (since it might be 
the case that such a proof exists, but cryptographers have been unable to find it yet), it does raise concerns on their 
quantum-security. Moreover, even when a "quantum" proof is available, this often has an impact on the security level 
that is attained against quantum adversaries; the reduction might be less tight than their classical counterparts. 

Finally, the formulation itself of the security goals of cryptographic schemes is a delicate task, and given the often 
counter-intuitive properties of quantum computing, some formulations turn out to be insufficient to achieve the desired 
level of security. In this case, new formulations and associated proofs are needed. 

5 Mathematical preliminaries  

5.1 Indistinguishability 

5.1.0 Introduction 

The notion of indistinguishability is often used to argue about the security of encryption schemes. The general idea 
behind such arguments is that an attacker with certain powers cannot tell the difference between encryptions of two 
different messages. Since the attacker cannot distinguish, they do not learn anything about the message. Within the 
domain of indistinguishability for encryption, there are three different ways to model the adversary's powers. These 
different models correspond to specific real-life situations. The three attacker models are chosen plaintext attack, non-
adaptive chosen ciphertext attack and adaptive chosen ciphertext attack. The strongest guarantees are obtained when an 
encryption scheme is indistinguishable under adaptive chosen ciphertext attacks (IND-CCA2). IND-CCA2 security is 
considered to be the norm for general-purpose encryption schemes to be deployed in practice. It is common to 
abbreviate IND-CCA2 to IND-CCA. The following subsections provide more details on the attacker models. 

5.1.1 Chosen Plaintext Attack (CPA) 

If an encryption scheme attains indistinguishability under Chosen Plaintext Attacks (IND-CPA), then an adversary is 
not able to obtain any information about messages that are freshly encrypted, even if they can encrypt messages of their 
own choice. 

5.1.2 Non-Adaptive Chosen Ciphertext Attack (CCA1)  

If an encryption scheme attains indistinguishability under non-adaptive Chosen Ciphertext Attacks (IND-CCA1), then 
an adversary is not able to obtain any information about messages that are freshly encrypted even if they have access to 
encryptions (ciphertexts) of messages of their own choice and even if they get access to decryptions of ciphertexts of 
their own choice. It is assumed, however, that the decryptions of ciphertexts should be executed before the selection of 
the messages to be freshly encrypted. This security notion was believed to be sufficient for security against real-world 
threats. However, Bleichenbacher published a practical attack against an IND-CCA1-secure version of RSA in 
1998 [i.2], proving this security notion inadequate in practice. 
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5.1.3 Adaptive Chosen Ciphertext Attack (CCA2) 

If an encryption scheme attains indistinguishability under adaptive Chosen Ciphertext Attack (IND-CCA2), then an 
adversary is not able to obtain any information about messages that are freshly encrypted even if they have access to 
encryptions (ciphertexts) of messages of their own choice and can get access to decryptions of ciphertexts of their own 
choice. The subtlety here is that the adversary is allowed to obtain decryptions of ciphertexts even after the message to 
be encrypted has been selected (and encrypted), although it is not allowed to ask for a decryption of this target 
ciphertext. This security notion is now believed to be sufficient for security against real-world threats. Specifically, a 
newer IND-CCA2-secure version of RSA is resistant to Bleichenbacher's attack. 

5.2 Qubits 
The main difference between classical computers and quantum computers is that quantum computers operate on qubits, 
whereas classical computer operate on classical bits. Loosely speaking, while a classical bit can assume a value of either 
0 or 1, a qubit can be in a state which is a combination of 0 and 1. This is called superposition. When a qubit is 
measured (in the so-called computational basis), its superposition collapses to a classical 0 or 1, according to a 
probability distribution associated with the superposition. 

Qubits can be modelled mathematically independently of their physical implementation. The state of a qubit can be 

denoted using a vector �
�� of length two with complex coefficients 
,�such that |
|� + |�|� = 1. The "zero" state is 

interpreted as �0
1
� and the "one" state is interpreted as �1

0
�. A qubit �
�� is therefore a superposition of 
 times "zero" 

plus � times "1". The coefficients of this linear combination relate to the probability of a 0 or 1 after the superposition 
collapses. 

A more common and convenient notation for qubits is the so-called bra-ket notation. The zero state is represented by 

|0⟩ and the one state is represented by |1⟩. A qubit �
�� can therefore be expressed as 
|0⟩ + �|1⟩. Most quantum 

algorithms require more than two qubits. The shorthand notation of � qubits in the zero state is |00… 0⟩. A 
superposition of � qubits is written as: 

 ∑ ���∈��,��� |�⟩ 

for complex coefficients �� (commonly referred to as amplitudes) such that ∑ |��|��∈��,��� = 1. A collection of several 
qubits is often referred to as a quantum register. 

An important theory within the field of quantum information is the no-cloning theorem, which states that it is 
impossible to make a perfect independent copy of an arbitrary unknown quantum state. In more formal terms, if given 
an arbitrary qubit |�⟩ and a fixed qubit, say, |0⟩, it is impossible to make a copy of |�⟩ and "store" it in the qubit |0⟩. In 
mathematical terms, there exists no quantum operator � such that ��|�⟩|0⟩) = |�⟩|�⟩ for every qubit |�⟩. 

5.3 Cryptographic Hash Functions 
A cryptographic hash function is a one-way function that maps an arbitrarily long bitstring - also referred to as a 
message - to a fixed-size bitstring called a hash digest. Additionally, cryptographic hash functions have three important 
properties: 

1) Pre-image resistance: Given a hash digest, it is computationally infeasible to find a message that maps to it. 

2) Second pre-image resistance: Given a message and its hash digest, it is computationally infeasible to find 
another message that maps to the same hash digest. 

3) Collision resistance: It is computationally infeasible to find two different messages that map to the same hash 
digest. 
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5.4 Proofs of Knowledge 

5.4.0 Introduction 

An interactive proof-of-knowledge protocol involves two entities: a prover � and a verifier �. The goal of the protocol 
is to convince the verifier � that the prover � knows a certain secret with certain properties. In a trivial 
proof-of-knowledge protocol, the prover would simply send the secret to the verifier, proving that they know the secret. 
The verifier can then verify that this secret does indeed enjoy the claimed properties. More advanced 
proof-of-knowledge protocols can prove the same properties without revealing any information about the secret. 
Proof-of-knowledge protocols are generally randomized; a proof of knowledge protocol is said to be public-coin if the 
verifier makes their choices of randomness publicly known. 

Generally, proof-of-knowledge protocols with additional properties are of particular interest. A Zero-Knowledge 
interactive Proof-of-Knowledge protocol (ZKPoK) is a proof-of-knowledge protocol where the verifier is convinced 
that the prover knows a certain secret with specific properties, without learning any new information about that secret. 
The secret is often referred to as the witness. A concrete example is a ZKPoK where the prover wants to prove that they 
know the plaintext to a certain ciphertext without revealing anything about this plaintext. The ciphertext is then 
considered public information and the witness is the plaintext (and the used randomness if the encryption scheme is 
non-deterministic). Notice that ZKPoKs are therefore a sub-variant of so-called "zero-knowledge proofs", where the 
prover wishes to convince the verifier that there exists a witness for a given public statement, without necessarily 
claiming to know the witness. In the previous example with encryption, the prover would therefore want to prove that a 
given string is a valid ciphertext, but with no further claim on their knowledge of the underlying plaintext value. 

Typically, it is required that for a ZKPoK system at least three properties hold with overwhelming probability: 
correctness / completeness, soundness, and zero-knowledge.  

5.4.1 Correctness or Completeness 

The terms correctness and completeness are used interchangeably. A ZKPoK system attains correctness or 
completeness. The property is as follows: if the prover does indeed know a secret with the claimed property, and if both 
prover and verifier follow the instructions of the protocol, then the verifier will accept the prover's claim of knowledge 
of the secret. 

5.4.2 Soundness 

If the prover does not know a secret with the claimed property, then the verifier will reject the prover's claim of 
knowledge of the secret with overwhelming probability. 

5.4.3 Zero-Knowledge 

The verifier gains no new information on the secret as a result of the protocol. 

5.4.4 Sigma Protocols 

The most common subclass of interactive ZKPoK protocols is the class of Sigma protocols. Protocols in this family 
adhere to the following three-step approach: 

1) The prover computes a value �, based on some randomness �, and possibly on their (supposed) knowledge of 
a witness � for the public statement �. The prover then sends � to the verifier. 

2) The verifier, upon receiving �, and possibly based on �, computes a "challenge" value 
 and sends it back to 
the prover. 

3) The prover computes a value � based on �, �, � and 
, and sends it to the verifier. 

The verifier, based on all elements that they have received and computed, then either "accepts" (that the prover holds a 
witness) or "rejects". 
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6 The Rewinding Technique for Zero-Knowledge 
Proofs 

Several cryptographic security proofs are no longer valid in a quantum setting, due to the difficulty of transposing a 
mathematical technique known as rewinding. This technique is often used to prove the soundness property of ZKPoKs 
(see clause 5.4). This clause describes the issue and the potential impact of the invalidity of the rewinding technique on 
security of protocols that are in use today. Notice that the issue also affects general zero-knowledge proofs, and not only 
proofs of knowledge, but that it has a more marked impact for this specific variant, as discussed later in this clause. For 
this reason, this clause focuses on ZKPoKs. 

The rewinding technique is used in ZKPoKs to prove both soundness and zero knowledge; the problem is illustrated by 
focusing on the first property. Soundness is generally formalized in the following terms: if a prover can convince the 
verifier that they know � with non-negligible probability, then the value of � can be extracted using oracle access to 
the prover, where "oracle access" means the internal states and variables of the prover remain inaccessible. This means 
that the steps a prover would undergo to convince the verifier that they know � can be used to obtain �, and thus 
knowledge of � and ability to prove it are equivalent. 

NOTE: It may seem like extracting � would violate the zero-knowledge property. However, the subtlety lies in 
the fact that the oracle access to the prover � is only available to �. A verifier does not have oracle access 
to the prover and can therefore not extract the witness �. 

Such a statement is then proved by producing an extractor that, given the public statement and oracle access to the 
prover, outputs a valid witness � to the statement. Such an extractor would typically feed the prover some input values 
(e.g. a challenge in the case of Sigma protocols), record the produced output, and then "rewind" the prover to a previous 
snapshot and feed it some other input values, recording the produced output, and so on. 

This proof technique is perfectly valid in the classical model. If a quantum proof of knowledge is needed, however, then 
the snapshots of the prover state should be quantum-accessible, but that is impossible as shown in [i.6] for two reasons: 

1) The no-cloning theorem states that unknown quantum information cannot be copied. "Taking a snapshot" of a 
certain state of the prover would mean copying that state and saving it for later access, but this theorem implies 
that this operation is not possible. This means that the extraction algorithm cannot be adapted to work in the 
quantum setting. 

2) When a quantum state is measured, it collapses to a classical state, which destroys information. Such a 
measurement would typically be performed by the extractor, and this process would therefore destroy 
information that could be necessary later on. 

On the other hand, Unruh [i.7] showed that classical proofs of knowledge (for sigma protocols) can be quantum proofs 
of knowledge, if the protocol satisfies the relatively standard variant property of special soundness (which states that 
any prover that can produce two valid "replies" �� and �� corresponding to two different challenges 
� ≠ 
�, but with 
same first message �, is able to efficiently compute �), and if it additionally satisfies a new property called strict 
soundness. Informally stated, the strict soundness property says that for a given initial value � and challenge 
 as 
described above, the response value � is uniquely defined. This essentially ensures that � itself does not contain a lot of 
information, so measuring � does not disturb the quantum state too much. In turn, this makes it possible to apply a 
quantum rewinding technique. 

For the zero-knowledge property, the issue is somewhat similar, in that a popular strategy to prove it requires building a 
simulator that, given black-box access to a verifier and no connection whatsoever to a valid prover, can produce an 
output which is indistinguishable from the output produced by the verifier in a normal prover-verifier interaction. Once 
again, these proofs typically rewind the verifier, which is not possible due to the no-cloning and destructive-
measurement properties of quantum information, as discussed above. 

The issue of zero-knowledge (not proof of knowledge) has been addressed by Watrous [i.8] by introducing a quantum 
rewinding technique. Building on this result and on strict soundness, Unruh [i.7] then shows that it is possible to create 
a quantum-computationally zero-knowledge quantum proof of knowledge, using the NP-complete problem of 
Hamiltonian cycles, under the assumption that quantum 1-1 one-way functions exist. In the same work, Unruh makes 
two proposals based on hash functions and block ciphers respectively. If these are quantum pseudo-random functions, 
the construction is a quantum 1-1 one-way function. Therefore, if they can be proven to be quantum pseudo-random 
functions, then the former construction is a quantum-computationally zero-knowledge quantum proof of knowledge. 
Since the problem of Hamiltonian cycles is NP-complete and any NP-relation can be reduced to the Hamiltonian cycle 
problem, the proposed protocol can be extended to prove any relation in NP. 
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7 Security Proofs in The Quantum Random Oracle 
Model 

7.1 The Quantum Random Oracle Model 
A family of cryptographic proofs models cryptographic hash functions as mathematical constructions known as random 
oracles. Proofs of this type are "valid in the Random Oracle Model" or "valid in the ROM", and are somewhat 
controversial [i.3] for the following reasons: 

• On one hand, a random oracle is not an accurate representation of a hash function. In fact, there exist artificial 
protocols which are proven to be secure in the ROM, but which are provably insecure when a hash function is 
used instead of the ROM, regardless of the hash function used [i.4]. 

• On the other hand, proofs in the ROM work very well in practice. Counterexamples such as the one referenced 
above remain artificial and of no impact on concrete protocols. Additionally, proofs in the ROM typically have 
a quite tight reduction, which means that they result in smaller parameters (assuming the parameters are 
chosen based on the security reduction) and, therefore, better efficiency, when compared to proofs for the same 
security level that do not make use of the ROM. 

Despite the downside expressed in the first point above, the ROM has been widely successful, and many protocols of 
daily use (e.g. some RSA implementations [i.5]) rely on it. The ROM framework provides a lot of control over the 
random oracle resulting in many convenient proof techniques to be used. Specifically, in proving reductions, it is 
possible to record the queries an adversary makes to the random oracle and it is possible to reprogram the random 
oracle by assigning specific digests to specific inputs, as long as it seems random to the adversary. 

A security proof should model a real situation as accurately as possible. Hence, when considering a quantum-capable 
adversary, one should assume that it has quantum access to the building blocks in its possession. In particular, if the 
cryptographic protocol under scrutiny uses a hash function �, then it should be assumed that the adversary can query 
the hash function in superposition, i.e. that they can obtain the quantum state ∑|�⟩|���	⟩ for any superposition ∑|�⟩ of 
input values in a single evaluation of the hash function. 

Translated to the ROM, this means that such an attacker should be able to query the oracle once with a superposition 
∑|�⟩ of input values and obtain ∑|�⟩|���	⟩ (� here being the random oracle). Such a setting is called 
Quantum-accessible Random Oracle Model, or simply Quantum Random Oracle Model (Q-ROM). 

The problem introduced by quantum computing is that security proofs that hold in the ROM do not automatically hold 
in the Q-ROM. For example, it is impossible to record or copy the queries an adversary makes without disturbing the 
superposition. This also makes it impossible to reprogram the random oracle, as that requires knowledge of which 
queries the adversary makes. This means that proofs using these techniques will need to be adapted to hold in the 
Q-ROM.  

Adapting a proof in the ROM to a proof in the Q-ROM is not always possible. In fact, there are protocols that are 
provably secure in the ROM but provably insecure in the Q-ROM. However, much like the theory-vs-practice 
dichotomy of the ROM, such counterexamples are completely artificial, and it is often stated [i.9] that a concrete 
protocol that is secure in the ROM will remain secure in the Q-ROM (if based on quantum-safe hardness assumptions), 
although with no formal proof in this sense. 

The following subclauses detail some typical scenarios where the Q-ROM plays a role, and what the impact of these 
considerations is. 

7.2 The Fiat-Shamir Transformation 
The Fiat-Shamir transformation turns a Sigma protocol (see clause 5.4.4) into a non-interactive ZKPoK. In its essence, 
the prover computes the first element � of the Sigma-protocol execution, and instead of waiting for the verifier to reply 
with a challenge 
, he computes 
 as 
 ≔ ���, �	, where � is the public statement and � denotes a cryptographic hash 
functions (see clause 5.3), and then proceeds to compute the resulting element �. Therefore, the prover can use this 
transformation to create a transcript ��,���, �	, �	 that proves their knowledge of a certain witness � for �, without 
interacting with the verifier. In turn, the verifier only needs to be presented with a transcript to verify the prover's claim, 
with no further interaction needed. 
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The security of the PoK obtained in this way can be proven in a black-box fashion in the ROM (i.e. by modelling the 
hash function � as a random oracle) under the assumption that the original interactive PoK proof is secure. The 
Fiat-Shamir transformation is notably used to construct digital-signature schemes from Sigma protocols [i.10], [i.11], 
[i.12] and [i.13]. 

It should be noted that the issue is often seen as of theoretical nature within the cryptographic community: as pointed 
out in the previous clause, it is often expected that a protocol which is secure in the ROM (and is based on appropriate 
computational-hardness assumptions) will remain secure against quantum attackers. In particular, post-quantum 
standard candidates in the NIST competition were not required to have a valid security proof in the ROM at the time of 
submission, and the parameters of these candidates are not based on the security reduction, but rather on the best 
well-known attacks (which do not target the reduction itself). 

The security of the Fiat-Shamir transformation in the Q-ROM has been the subject of various research articles [i.7], 
[i.8], [i.9] and [i.14]. The main issue in carrying the proof over from the ROM to the QROM is as follows. In the ROM 
security proof of the Fiat-Shamir transformation, the reprogrammability of the random oracle is crucial. Specifically, a 
dishonest non-interactive prover that can fool a verifier with probability p can be used to construct a dishonest 
interactive prover that can fool a verifier with similar probability. For a dishonest non-interactive prover for security 
statement s that produces commitment a, and response z (constructed using a challenge c=H(a,s) ), the following 
dishonest interactive prover P can be constructed: P sends a to the verifier and receives a challenge c'. P reprograms the 
oracle such that H(a,s)=c'. Now z is a valid response. This is a tight reduction classically [i.52]. The necessity of 
reprogramming led to the belief that the Fiat-Shamir transformation is not secure in the QROM [i.22]. However, the 
works of [i.9] and [i.14] show a quantum reprogrammability technique that can be applied if the underlying Sigma 
protocol has specific properties, referred to as either quantum computationally unique responses [i.9] or collapsing 
sigma protocol [i.7]. This property holds if it is computationally infeasible for a quantum adversary to determine 
whether a superposition of valid responses for a given ��, 
	 pair has been measured or not.If the Sigma protocol has 
this property, then its Fiat-Shamir transformation is a quantum proof-of-knowledge as well, although with a less tight 
reduction than in the classical setting. 

In terms of the tightness of the obtained reduction, in the Q-ROM case, given � queries to the random oracle, the 
probability that an adversary can produce a valid transcript without knowledge of a witness is a factor ����	 larger than 
the probability that an adversary can break the non-interactive Sigma protocol. This means that the tightness of the 
proof changes from a factor � to a factor ����	 in the Q-ROM. The practical consequence is that Q-ROM Fiat-Shamir 
reductions result in larger parameters than ROM Fiat-Shamir reductions, e.g. a larger challenge set used in the 
interactive protocol or a higher number of parallel repetitions of the interactive protocol - although once again, in 
practice the parameters of these constructions are often based on the best well-known attacks and not on the tightness of 
the reduction. 

Dilithium (the only NIST post-quantum draft standard that uses the Fiat-Shamir transformation) is proven secure in the 
Q-ROM [i.15].  

7.3 The Fujisaki-Okamoto Transformation and Related 
Constructions 

7.3.0 History of Transformations 

IND-CCA2 is the standard for encryption schemes these days [i.44]. For secure messaging, it is required that long 
messages can be sent securely, without any information about the message leaking to eavesdroppers. The most common 
approach towards building an IND-CCA2 secure messaging protocol uses the KEM-DEM paradigm [i.32], where an 
IND-CCA2 asymmetric encryption scheme is combined with an IND-CCA2 symmetric encryption scheme to produce 
an IND-CCA2 hybrid encryption scheme. It has the advantage of being public-key based, so no keys need to be 
pre-shared. Additionally, the efficiency of the symmetric cipher makes it a suitable approach for arbitrarily long 
messages. 

The DEM part of KEM-DEM is often instantiated using AES or another symmetric cipher, of which the classical and 
quantum security are well-studied and accepted. The only other requirement to obtain a quantumly-secure hybrid 
encryption scheme is therefore to combine it with a quantum-secure IND-CCA2 KEM. 
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The first IND-CCA2 asymmetric encryption scheme was RSA-OAEP, which uses the OAEP transformation [i.49], 
[i.45]. OAEP was originally designed for the RSA cryptosystem, but can be applied in a broader way. It takes a 
deterministic partial-domain one-way trapdoor permutation and produces an IND-CCA2 encryption scheme. Many 
schemes that came after RSA, however, were not based on partial-domain one-way trapdoor permutations, specifically 
the post-quantum class of algorithms.  

Over time, multiple algorithms were designed to transform asymmetric encryption schemes with different security 
properties into IND-CCA2 KEMs. Specifically, the Fujisaki-Okamoto transformation [i.17], [i.16], the REACT 
transformation [i.48] and the GEM transformation [i.48]. In [i.18], Hofheinz et al. broke down the Fujisaki-Okamoto 
transformation into multiple smaller transformations with possible variations. As a result, they were able to show that 
the REACT transformation and GEM transformation are in fact slight variations of smaller transformations that are 
used within the Fujisaki-Okamoto transformation. The proof techniques for the properties of the REACT and GEM 
transformation follow the same steps as this modular subtransform of the Fujisaki-Okamoto transform. 

Because of this modularity with variations, the Fujisaki-Okamoto transformation can take a non-deterministic 
encryption scheme with the OW-CPA or IND-CPA property and produce an IND-CCA2 KEM of which the security is 
based on the same assumption as the original scheme. The classical security proof is tight when the scheme is IND-CPA 
and not tight when the scheme is only OW-CPA. The parameters of the final scheme will therefore need to be bigger for 
the same security level if the original scheme has OW-CPA compared to IND-CPA. 

The pure REACT and GEM transformations require the OW-PCA (One-Way against Plaintext Checking Attacks) 
property, which is different from the OW-CPA property and is a lot less common for schemes to attain. Specifically, 
Peikert shows that many natural lattice-based encryption schemes do not have the OW-PCA property due to the 
equivalence of the search and decisional Learning With Errors problems [i.47]. For such schemes, the full 
Fujisaki-Okamoto transform is more suitable. 

7.3.1 The Original Fujisaki-Okamoto Transform 

The Fujisaki-Okamoto transform was first introduced in 1999 [i.16] and later improved in 2013 [i.17]. Generally, only 
the latter is considered, because the proof is tighter and certain issues with the previous version were fixed in the later 
version. 

In the classical proof, the success probability of an adversary trying to break the IND-CCA2 property of the final 
scheme is roughly a factor � larger than the probability of an adversary trying to break the IND-CPA property of the 
underlying scheme, where � is the number of random-oracle queries the adversary is allowed to make, which is 
considered a tight reduction, since it is practically impossible to get a smaller tightness gap in the (Q)ROM. There are 
two problems when this transformation is used for post-quantum KEMs: 

1) This proof requires the IND-CPA PKE to be perfectly correct, while almost all post-quantum candidates have 
a small correctness error. This is specifically the case for NIST finalist Crystals-Kyber [i.20].  

2) This proof technique uses the ROM, so there is no guarantee that the proof or its tightness gap hold against 
quantum adversaries.  

3) This proof holds in the single-user setting. 

NOTE:  Problems 1 and 3 also apply to classical KEMs. 

7.3.2 Solving The Correctness Problem 

Unfortunately, the proof techniques to prove the IND-CCA2 security of the FO transform in the ROM cannot easily be 
translated into proof techniques for the Q-ROM. This is due to some issues that arise with quantum computation. 
Specifically, a common proof strategy in the ROM for FO transforms is to show that, if the evaluation of a random 
oracle on a given input can be distinguished from a uniformly random value, then the adversary has to have queried the 
oracle on that input already. The adversary therefore knows the input, and it is argued that this implies that the 
adversary has broken the security of the asymmetric encryption scheme that is used in the FO transform. Since quantum 
adversaries can access the random oracle in superposition, it is not immediately clear how this proof technique would 
work in the Q-ROM. 

The work of Hövelmans et al. [i.18] introduces a variety of FO transformations that are secure in the ROM and allow 
the IND-CPA PKE to have a small decryption errors. Additionally, the security reductions to an IND-CCA2 KEM are 
tight. The transformation that is generally used in follow-up work is � �	 , and goes as follows.  
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Assume an asymmetric IND-CPA encryption scheme PKE with key generation function !"#, encryption function "#$ 
and decryption function %"$. !"# takes a security level and produces a public key and a secret key, "#$ takes a 
message, a public key and randomness and produces a ciphertext and %"$ takes a ciphertext and a secret key and 
produces a decryption in the message space or failure (⊥). 

For key generation, given security level �: 

1) Calculate �&'
, �'
	 = !"#��	 

2) Sample a uniformly random �-bit string � 

3) Return (sk', s) 

For encapsulation, given public key &': 

1) Sample a uniformly random plaintext & from the message space of PKE 

2) Calculate ciphertext 
 = "#$(&, &',!�&	) for cryptographic hash function ! 

3) Return 
 and ��&	 for cryptographic hash function � different from !  

For decapsulation, given secret key �', public key &' and message * = �
′, &′	 : 

1) parse ��'′, �	 = �' 

2) &

 = %"$�

, �'	 

3) If &

 =⊥ or 

 ≠ "#$(&

, &',!�&

	), return ��� ∨ 
	 

4) Else, return ��&

	 

NOTE:  The original transformation in [i.18] also added 
 to the input of � in step 4 of decapsulation, but in [i.30] 
it is shown that this is not necessary. 

7.3.3 Solving the Q-ROM Problem 

This leaves one issue, namely that of a proof in the Q-ROM. The original work of [i.18] only proved IND-CCA2 
security of the above construction in the ROM and introduced an extended version to prove IND-CCA2 security in the 
Q-ROM. The later work of [i.33] proves the above construction to be an IND-CCA2 KEM in the Q-ROM with a 
quadratic tightness gap in the number of queries.  

Unfortunately, the quantum security proof only applies to specific variations of the Fujisaki-Okamoto transform [i.18]. 
The REACT and GEM transformations [i.48] do not fall under this specific result, but were proven to be quantumly 
secure with linear tightness gap if the encryption scheme has the OW-qPVCA property, which stands for quantum 
plaintext checking attacks, where the adversary can make quantum queries to a plaintext checking oracle [i.47]. 

With respect to OAEP, the quantum security of the transform was proven if the permutation is a deterministic quantum 
partial-domain one-way permutation [i.46]. 

7.3.4 Solving the User Setting Problem 

The construction in clause 7.3.2 is specifically secure in a single user setting, where one user publishes its public key so 
that other users can send them encrypted messages. However, single user security is not enough when it is possible that 
a user sends the same message to multiple different users with each a public/private key pair. It is then considered to be 
a multi-user setting. Security for single-user IND-CCA2 secure schemes can completely break in multi-user settings, as 
shown by [i.31], which shows that the message can be decrypted by anyone if the basic RSA cryptosystem is used. 
Fortunately, [i.21] proves that IND-CCA2 security in the single user setting implies IND-CCA2 security in the multi-
user setting, but the tightness gap grows linearly in the number of users. 

A much smaller tightness gap is achieved by [i.19], who slightly alter the FO transform to obtain domain separation. 
Instead of calculating !�&	 in step 2 of encapsulation and !�&

	 in decapsulation, they compute !�& ∨ &'	 and 
!�&′′ ∨ &'	. They additionally show how using a small uniformly random part of the public key can be used instead of 
the entire public key, without affecting the proof or its tightness. 
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7.3.5 Crystals-Kyber 

The NIST finalist Crystal-Kyber [i.20] uses a slightly altered version of the FO transform in [i.18] that leverages the 
same security arguments for IND-CCA2 security and additionally applies the suggestion from [i.19] for protection 
against multi-user attacks, using the full public key as input to !. In the security considerations section of [i.20], the 
tightness of the reductions is taken into account. Their ROM reduction is tight, so basing parameters on that reduction 
would not require larger values. However, their Q-ROM reduction is non-tight. They argue that this non-tightness is not 
a problem for practical security, since: 

1) the attacks that would be able to abuse this non-tightness are impractical; 

2) they introduce a tight reduction to IND-CCA2 security from a non-standard assumption using a technique 
from [i.29]. This new reduction requires statistical disjointness of the IND-CPA version of Kyber, which they 
argue to be the case. 

Therefore, the authors of [i.20] decided not to increase the parameters based on the non-tight Q-ROM reduction. 
However, the choice to ignore non-tightness has to be a calculated and thoroughly argued one, since non-tightness can 
be abused by adversaries, as seconded by the authors of [i.20], and non-tight Q-ROM reductions can therefore not 
always be ignored. 

8 Commitment Schemes 
With a commitment scheme, a party holding a secret message * can produce an element called commitment on *, such 
that the commitment reveals no information on *, yet being bound to it. More precisely, a commitment scheme consists 
of two algorithms: 

1) Commit algorithm: on input a message *, it produces a commitment 
 and opening information +,  
i.e. �
,+	 = commit�*	. 
Concretely, the party holding the secret message * would run this algorithm and publish 
, while holding 
+ private, in what is known as commit phase. 

2) Verification algorithm: on input a message *, commitment 
, and opening information +, it outputs either 1 or 
0 (to be interpreted as true or false). 
Typically, in what is known as a reveal phase, the party holding the secret * and the opening information + 
obtained from the commit algorithm would publish both * and +, and other parties that already had access to 
the commitment 
 can run the verification algorithm to check that * is indeed the message associated to 
. 

Commitment schemes are required to be correct, meaning that verify�*,+, 
	 = 1 if �
,+	 = commit�*	, and satisfy 
the binding property and the hiding property. The binding property says that given �
,+	 = commit�*	, it is infeasible 
to find *
 ≠ *,+′ such that verify�*′,+′, 
	 = 1. This means that after committing to a message *, one cannot later 
claim to have committed to a different message. The hiding property says that it is infeasible to determine * if only 
given the commitment value 
. This means that it is infeasible to figure out what the message * is until the owner of 
the secret message publishes the opening information + in the reveal phase. 

The infeasibility notion of the binding and hiding property can be concretely defined in several ways, giving rise to 
different variants of these properties. More precisely, a commitment scheme can be information-theoretically binding, 
meaning that for each commitment 
 there exists only one pair �*,+	 which verify�*,+, 
	 = 1. Alternatively, a 
commitment scheme can be computationally binding, meaning that there exist multiple pairs *′,+′ with *
 ≠ * that 
are accepted for a single 
 (i.e. that satisfy verify�*
,+
, 
	), but that they are infeasibly hard to compute. 

The hiding property can be either information-theoretical, statistical, or computational. Information-theoretical hiding 
means that for a given commitment 
, all possible values *′ are equally likely to have generated 
. If it is statistically 
hiding, all values *′ are almost equally likely to have generate 
, with negligible differences. If it is computationally 
hiding, then it is infeasibly hard to compute a message *′ such that �
, … 	 = commit�*′	, when given only 
 as input. 

It is easy to prove that no commitment scheme can be both information-theoretically binding and information-
theoretically/statistically hiding. Intuitively, this is because if a commitment is information-theoretically binding, there 
is only one pair *,+ such that verify�*,+, 
	 returns 1. It is therefore theoretically possible to exhaustively try all 
*′,+′ to figure out which message was committed to. Similarly, if a commitment scheme is information-theoretically 
hiding, then there should be multiple *′,+′ such that verify�*′,+′, 
	 returns 1. It is then theoretically possible to 
exhaustively search for other *′,+′ that are accepted. 
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Since the present document focuses on the security of classical protocols against quantum-capable attackers, it will be 
assumed that all values *, 
 and + are classical. The issue with commitment schemes is that a quantum-capable attacker 
can break their security in a way which is not captured by the above definitions; in other terms, these mathematical 
definitions do not fully express the properties that one would reasonably ask from a quantum-safe commitment scheme. 

More precisely, the work of [i.22] shows that computational binding is insufficient for a commitment scheme that wants 
to achieve quantum security. More specifically, the authors show that there exists a commitment scheme that attains 
computational binding, yet there exists a quantum-polynomial-time adversary �′ who can produce a commitment 
, and 
can then find valid opening information +′ for any requested message *′ in the message space. This seems to be in 
contradiction with the binding property, but this is not the case: the adversary �′ never computes two pairs 
�*,+	, �*′,+′	 with * ≠ *′ that are both valid openings for the commitment. The algorithm only finds one pair, but 
the message can be chosen after the commitment has been made. Notice that this attack has no equivalent in the 
classical setting, since any classical algorithm that takes as input 
 and *′, and produces valid opening information +′, 
could be run several times with different inputs *′′, hence violating the notion of binding; this is not the case for the 
quantum algorithm devised by the authors of [i.22], which makes use of a quantum state that collapses after computing 
+′, hence making it impossible to run the algorithm again. 

Even though the attack is only showed to work for a specific, somewhat contrived commitment scheme, it does indicate 
that the notion of classical computational binding is insufficient in the presence of quantum adversaries. 

One solution is to only use information-theoretically binding commitment schemes (which then have to be 
statistically/computationally hiding), but this generally results in inefficient schemes, having in particular long 
commitments. Other alternatives introduce new binding properties that can solve the aforementioned problem, but they 
all have certain disadvantages that are undesired for practical and efficient commitment schemes. An overview of these 
can be found in [i.23]. Additionally, in [i.23], Unruh introduces a new binding property called collapse-binding, which 
does not suffer from the same disadvantages as the other propositions, and in particular does not conflict with 
information-theoretical/statistical hiding the way that information-theoretical binding would and allows for short 
commitments. Unruh therefore claims that collapse-binding commitments in the quantum setting are similar to 
computationally binding commitments in the classical setting. 

Only some intuition on the collapse-binding property will be given in the present document; the reader can refer to the 
original article for a more detailed and formal discussion. Given an information-theoretically binding commitment 
, 
there exists only one message *� for which 
 is a valid commitment; hence if a quantum adversary � attempts to 
produce a (classical) commitment 
 and a superposition of valid messages |,⟩ for 
, necessarily |,⟩ = |*�⟩, i.e. the 
quantum state |,⟩ is actually a trivial superposition, and will always result in the same message *� when measured. 
This means that if the adversary produces 
 and |,⟩, and |,⟩ is subsequently measured, then this measurement will 
produce no effect, and the adversary will have the same behaviour whether this measurement is performed or not. With 
collapse-binding, this definition is relaxed: for any quantum-polynomial-time adversary �, measuring |,⟩ only modifies 
the behaviour of � with negligible probability. 

In the same work, Unruh discusses how collapse-binding commitment schemes can be obtained, focusing in particular 
on the somewhat canonical approach of using a cryptographic hash function � (possibly modelled as a random oracle), 
and then setting commit�*	 ≔ ���*|+	,+	 for random +, with the trivial verification function that checks whether 

 = ��*|+	 or not. While the collision resistance of � implies that the scheme obtained in this way is computationally 
binding, Unruh shows that it does not automatically imply collapse-binding. In order to achieve this property, the hash 
function needs to be collapsing, i.e. to satisfy a new property introduced in the same article. A collapsing hash function 
is defined by means of a game, where the adversary � attempts to produce a (classical) digest ℎ and a quantum register 
- containing a superposition of inputs *� such that ��*�	 = ℎ; in a variant of the game, the register - is measured 
before being given back to the adversary, and the hash function � is said to be collapsing if no 
quantum-polynomial-time � can detect whether this measurement was performed or not (with non-negligible 
probability). 

Unruh shows that random oracles satisfy the collapsing property, and conjectures that functions like SHA-3 are 
collapsing. Subsequent works [i.24], [i.25] proved that SHA-2 and SHA-3 are collapsing, but under some unproven 
assumptions on some of their components. Fehr [i.26] introduced in 2018 an alternative framework to define the notion 
of collapsing and collapse-binding, with much simpler proofs and arguments as a consequence. Finally, Zhandry [i.27] 
introduced in 2022 several different constructions of collapsing hash functions, based on different quantum-hardness 
assumptions. 
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9 Security Under Parallel Composition 

9.0 Introduction 
Game-based and simulation-based proofs provide security under sequential composition with the same protocol 
(game-based) or arbitrary protocols (simulation-based). However, this does not guarantee that certain protocols are 
secure when they are initiated in parallel. There are two frameworks that guarantee security under parallel composition: 
the Universal Composability (UC) framework and the Indifferentiability framework. In essence, they both provide the 
same guarantees, namely that if a larger process initiates another process as a sub-routine, that the behaviour of the 
larger process changes negligibly if the sub-process is exchanged for some ideal functionality. The two frameworks take 
very different approaches towards formalizing systems and sub-systems, but in principle a proof in one can also be 
written as a proof in the other. However, the way that processes are formalized does influence how easy it is to write a 
proof for a certain process. For example, it is quite natural to write a proof for a protocol between different parties in the 
UC framework, whereas proofs for cryptographic primitives, such as hash functions, can be written more easily in the 
Indifferentiability framework. 

9.1 The Universal-Composability Framework 

9.1.1 The Classical Universal-Composability Framework 

The Universal Composability (UC) framework was introduced by Canetti in 2001 [i.53]. Oftentimes, a communication 
or security protocol can be subdivided into one outer protocol that uses multiple subroutines, which are we referred to 
as sub-protocols in the present document. A protocol or subprotocol tries to attain a certain security property, such as 
authentication or authorization. In the UC framework, how well a protocol does at attaining such a security property is 
measured by how closely it manages to realize its idealized functionality. 

The unique and attractive feature of the UC framework is that, if a real sub-protocol is proved to behave like an ideal 
sub-protocol in the UC framework, then the real sub-protocol can always be substituted for the ideal sub-protocol in the 
security analysis of the outer protocol, regardless of what this outer protocol does. This is a very powerful tool to extend 
and build up proofs for complex protocols. There are two flavours of this protocol: one is statistical UC and the other is 
computational UC. The first provides statistical security, so attackers can be computationally unbounded without 
breaking the protocol, and the latter provides computational security, in which case only probabilistic polynomial-time 
attackers are considered. 

The way this framework is formalized, is by modelling all involved systems as Interactive Turing Machines (ITMs), 
which are abstract models of computation that can simulate any computer algorithm that communicates with other 
systems (additionally modelled as ITMs). The UC framework guarantees the parallel composability property by 
introducing an environment ITM, which initiates adversaries (modelled as ITMs), a protocol . between other ITMs, and 
observes outputs. The goal of a proof in the UC framework is to show that for all possible environments and all possible 
adversaries, it is possible to find a simulator such that an execution of the environment with the adversary and 
sub-protocol / behaves almost identically to an execution of the environment with the simulator and ideal sub-protocol 
�. 

NOTE: Formally, the adversary outputs a 0 or 1 after observing the protocol and initiating adversaries. The 
probabilities that the output of the adversary is 0 or 1 are analysed, and these probabilities should be 
negligibly close in both scenarios. 

Given the fact that a simulator on the ideal sub-protocol � has less power than the adversary on the real sub-protocol /, 
this shows that any attack on the real sub-protocol / would also work on the sub-protocol �, indicating that the real 
protocol emulates the ideal protocol. 

This framework is very suitable for proving the security of protocols in general, but it is perhaps even more relevant for 
the area of Multi-Party Computation (MPC). In MPC, protocols are created that should have the same functionality and 
guarantees that a trusted third party provides, without actual access to a trusted third party. The goal is therefore to show 
that the protocol emulates a trusted third party. 
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9.1.2 Universal Composability and Quantum Adversaries 

With regard to quantum security, theorem 2 of [i.51] proves that security proofs in the statistical UC framework still 
hold in a quantum setting. More concretely, if . is a classical protocol that statistically UC-emulates a certain classical 
functionality �, then . statistically quantum-UC-emulates �. This means that proofs in the statistical UC framework 
still hold against quantum adversaries, provided that the underlying primitives are quantum safe. However, it is not 
generally true that classical statistical indistinguishability implies quantum statistical indistinguishability. Additionally, 
classical computational UC-security does not imply quantum-computational UC-security, so this would require a new 
proof. 

9.2 The Indifferentiability Framework 

9.2.1 The Classical Indifferentiability Framework 

The indifferentiability framework was introduced in 2004 by Maurer et al. [i.34]. It is an answer to a problem seen in 
proofs on indistinguishability. Indistinguishability proofs are used to motivate why a certain cryptographic system can 
replace an ideal function F with a cryptographic system S, by showing that an adversary cannot distinguish between F 
and S. However, this is only possible for systems with entropy. In other words, if S uses keys or other sources of 
randomness unknown to the attacker, then indistinguishability proofs are sufficient, but not if S is deterministic or the 
randomness is made public. The main application of the indifferentiability framework is hash functions, since 
cryptographic systems often specify a concrete hash function. 

In the indifferentiability framework, systems are modelled as conditional probability distributions with inputs and 
outputs. Even though it seems restrictive, it is still possible to model computer algorithms in this framework, because 
the output of a computer algorithm can also be modelled as a conditional probability distribution conditioned on the 
input. To capture the nature of cryptographic systems, the Indifferentiability framework models the input through two 
channels: a private channel and a public channel. 

The difference between indistinguishability and indifferentiability is subtle, but indistinguishability says that for a real 
system $′, an ideal system $, and for every system %, called the distinguisher, the distinguisher behaves almost 
identically (e.g. the probabilities that it outputs either 0 or 1 are negligibly close) if: 

1) The distinguisher has no access to the input interface of $′, but observes the output interface of $′. 

2) The distinguisher has no access to the input interface of $, but observes the output interface of $. 

A proof of indistinguishability is enough when the goal is to substitute ideal system $ for $′, under the following 
assumptions: 

1) No external party can influence the behaviour of $. 

2) No external party has access to the randomness of $. 

Such assumptions are acceptable for keyed primitives, as long as the key is not known, because a keyed primitive is 
essentially a random primitive drawn from a distribution of primitives with deterministic behaviour. However, for other 
applications such assumptions are not reasonable, which is the case for hash functions because they essentially are 
primitives with fixed behaviour. If a hash function is used instead of a random oracle, indistinguishability is not 
sufficient. 

Since the indifferentiability framework is generally used to prove that specific constructions of hash functions are 
indifferentiable from random oracles, the following is an explanation on how that is done. Generally, hash functions use 
mechanisms that are based on other primitives. For example, SHA-3 is built using a sponge construction, which uses a 
compression function as a primitive. In the following, denote by $
 the outer construction - e.g. sponge 
construction - with an ideal inner construction, and by � the ideal version of the inner construction, such as an ideal 
compression function, which is basically a random oracle with a fixed-length input. 

In the indifferentiability game, there is a distinguisher %, who needs to distinguish two scenarios. In scenario one, the 
distinguisher % is provided with: 

• The output of construction $
 using ideal primitive �. 
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• The ideal primitive �. If the primitive is a symmetric primitive, such as a block cipher, then an efficient 
inverse ��� exists, which the distinguisher also has access to. 

In scenario two, the distinguisher % is provided with: 

• The output of random oracle �. 

• A simulator 0� that simulates the primitive � (and ���) based on the random oracle �. 

It then needs to be shown that there exists a polynomial-time simulator 0� such that for all polynomial-time 
distinguishers %, the probability that % can distinguish the two scenarios is negligible in the security parameter. More 
formally, assume that % outputs a bit, where without loss of generality it outputs 0 if it thinks it is provided with 
scenario 1, and 1 if it is provided with scenario 2. It then needs to be proven that: 

 ∃0� . ∀%. |��1%�$
 ,� ���⁄ 	 = 13 − ��1%��, 0�	 = 13| ≤ 4, 

where 4 is negligible in the security parameter and 0�, % are polynomial-time. 

9.2.2 Quantum Indifferentiability 

The indifferentiability framework and the proofs built upon it are inherently classical. That is, it is not evident whether 
classical indifferentiability proofs still hold against quantum adversaries. Classical indifferentiability has been proven 
for many constructions already. Specifically, the sponge construction used in SHA-3 was shown to be classically 
indifferentiable from a random oracle in [i.28]. 

The indifferentiability game for hash functions from the previous clause can easily be extended to the quantum case, by 
making both 0� and % quantum-polynomial-time algorithms. In [i.35], Carstens et al. prove under some 
quantum-information-theoretical conjecture that the sponge and Feistel constructions are not information-theoretically 
quantum-indifferentiable, which are popular constructions for cryptographic primitives. If this conjecture were true, 
then SHA-3 would not be quantum-indifferentiable from a random oracle. Fortunately, the work of [i.50] proves the 
sponge construction to be quantum-indifferentiable, disproving the earlier conjecture. They do this using the 
compressed oracle technique. As a result, SHA-3 was proven to be quantum-indifferentiable from a random oracle and 
can safely be used to instantiate random oracles. 

9.3 Limitations 
It is important to note that both the UC and indifferentiability frameworks have limitations, as illustrated in the work of 
Ristenpart et al. [i.36]. They first examine the indifferentiability framework and provide a scheme that is secure in the 
ROM, but insecure when instantiated with a concrete hash function, even though this hash function is indifferentiable 
from its ideal functionality: the random oracle. This scheme is a hash-based storage auditing scheme, which can be used 
when a server stores files and the user wants to verify that the file is present in the database (e.g. the database owner did 
not throw away random files to save space). The scheme uses an ideal compression function �. 

NOTE: An ideal compression function is a function that takes a fixed-length input and provides an output of 
smaller length such that it is hard to determine what the input was, given the output. These can be used as 
building blocks to build hash functions. 

When a user wants to verify that their file - is still in the database, they send the challenge $. The database owner then 
has to provide the response: 

 � = ����5�,-	,$	, 

for some fixed constant string 5� (the initialization vector). 
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The construction as provided above was shown to be indifferentiable from a random oracle in [i.37]. However, the 
database owner can cheat by computing 6 = ��5�,-	 when the document is initially received and computing ��6,$	 
as a response to any challenge C in the future. Coron et al. analyzed the proofs and concluded that the indifferentiability 
claims break for security notions captured by experiments that have multiple, disjoint adversarial stages. This is the case 
for the hash-based storage auditing scheme. In other words, a proof is multi-stage if an adversary can derive some state 
0 from the input it gets that is smaller than the input itself and can use 0 to answer challenges. Examples of such 
experiments are the security notions of deterministic public-key encryption, password-based cryptography, hash 
function non-malleability and key-dependent message security. Security notions that are not affected are those that 
involve a single stage with a stateful adversary, such as IND-CPA, IND-CCA and EUF-CMA. Ristenpart et al. [i.36] 
additionally show that the same limitations hold for the Universal Composability framework. 

10 Pseudo-random functions 

10.1 The Quantum Security of Pseudo-Random Functions 
In the previous clauses, the focus has been on asymmetric primitives. This has largely been the focus of post-quantum 
security analyses, since Shor's quantum algorithm breaks current asymmetric primitives in polynomial time, whereas 
symmetric primitives were believed to still be secure, albeit at a cost of (at worst) half the bit security on account of 
Grover's algorithm. However, the underlying mathematical problems are not the only consideration in the post-quantum 
security of the asymmetric primitives. Specifically, a lot of additional research has gone into understanding the 
post-quantum security of hash functions, and a lot of the constructions underlying hash functions are used in symmetric 
primitives. This raises the question whether security notions need to be redefined for symmetric primitives as well. 

The first results regarding the quantum security of symmetric constructions was on account of Zhandry, who provided 
the first analysis of Quantum-safe Pseudo-Random Functions (QPRFs) [i.38]. He provided two models to reason about 
the powers of a quantum adversary for QPRFs, which apply to all symmetric primitives in general: 

1) Standard Security: a quantum adversary can do local quantum computations, but input to and output from the 
primitive in question is purely classical. 

NOTE: This is not to be confused with the standard model of reductions. 

2) Quantum Security: a quantum adversary has quantum access to the primitive in question, such that a quantum 
state (e.g. a superposition) can be provided as input and the output is a quantum state as well. 

Even though the quantum security gives a lot of power to the adversary, which might not directly be applicable to all 
practical situations, it captures a wider class of attackers.  

EXAMPLE: If a quantum internet becomes wide-spread, this class of attackers becomes more prominent. 

The conservative long-term approach is therefore to use symmetric primitives that attain quantum security, but for the 
foreseeable future, standard security is more realistic. 

10.2 Pseudo-Random Functions and Message Authentication 
Codes 

In [i.38], Zhandry notes that classical proofs of existing PRFs based on pseudo-random generators used reasoning that 
does not apply to quantum adversaries. Simply put, the classical proofs used the argument that a classical adversary can 
only call the PRF a polynomial number of times, which evaluates a polynomial number of 'internal states', even though 
the PRFs have an exponential number of internal states. 

In particular, Goldreich et al. create in [i.39] a PRF using a keyed length-doubling pseudo-random generator and 
construct a binary tree. The first node is the key itself. Then the edge between this node and the left child-node is 
assigned the value 0 and the edge between the node and its right child-node is assigned value 1. Then the 
pseudo-random generator is applied to the value in the node to obtain a string that is twice as large as the string in the 
node itself. The left half is assigned to the left child node (with edge value 0) and the right half is assigned to the right 
child node (with edge value 1). This is done recursively. 
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Whenever the PRF is called on an input 7, it decomposes the value into bits 7� through 7� for some #. Then it starts at 
the first node, it traverses down the edge with value 7�, at the next node it traverses down the edge with value 7�, and so 
on. The value at the leaf node is then provided as output. 

Each call to the PRF only visits a polynomial number of nodes on each level. Clearly, there are an exponential number 
of nodes. This argument can then be used to construct a polynomial-time adversary �, who can distinguish the 
underlying pseudo-random generator from random, given a polynomial-time adversary � who can distinguish the PRF 
from random. More specifically, � succeeds with polynomially smaller success probability than �, so it still runs in 
polynomial-time, if it wants to achieve the same success probability. 

Zhandry notes that many other PRFs have security proofs with similar arguments. However, quantum adversaries could 
access the PRFs in superposition, possibly accessing all of the (exponentially many) nodes at the same time with one 
query. Now the adversary � constructed from � succeeds with exponentially smaller probability. To solve this gap, 
Zhandry provides quantum-security proofs for PRFs based on pseudo-random generators, pseudorandom synthesizers 
or lattices. Additionally, Zhandry proves that if secure PRFs exist, then there are standard-secure PRFs that are not 
QPRFs. Zhandry specifically shows that certain standard-secure PRFs can be turned into PRFs with a hidden period, 
which can be extracted using Simon's algorithm by quantum adversaries, but not by classical adversaries. They are 
therefore not QPRFs. In other words, there are PRFs that are indistinguishable from random, if a quantum adversary has 
classical access to the PRF, but it is distinguishable from random if the adversary has quantum access to the PRF, so 
even though the three PRFs for which Zhandry provides alternative proofs turned out to be quantum-safe, it does not 
generally hold that all standard-secure PRFs are quantum-safe. Some negative results are already known, namely PRFs 
based on three-round Feistel cipher are prone to quantum distinguishing attacks [i.40] and PRFs based on the 
Even-Mansour cipher are also prone to quantum distinguishing attacks [i.41]. 

The quantum-security results for PRFs have direct consequences for other cryptographic applications. For example, 
Boneh and Zhandry [i.42] show that quantum-safe PRFs are quantum-safe Message Authentication Codes (MACs). 
More specifically, they are existentially unforgeable under quantum chosen-message attacks. However, not all MAC 
constructions are quantum-safe. Notably, Kaplan et al. [i.43] show that Simon's algorithm can be used to break 
standardized modes of operation such as CBC-MAC, PMAC and GMAC in the quantum security model. These are 
based on block ciphers and are still broken if the underlying block cipher is quantum-safe. 
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Annex A: 
Change history 

Date Version Information about changes 

02/2023 V0.0.6 
Text was added to the preliminaries; the placeholders have been replaced with complete 
text. The introduction to Proof of Knowledge systems was moved to the preliminaries. A 
few terms have been added and minor stylistic changes have been made. 

02/2023 V0.0.7 An executive summary was added, as well as more details to Fiat-Shamir problem. 

06/2024 V1.0.0 

More references have been added, The Fiat-Shamir problem has been elaborated on, 
several passages have been updated for clarification and parts that are subject to 
change over time and therefore difficult to maintain have been removed, the references 
have been cleaned up. 

06/2024 V1.0.1 References have been corrected and added. The reference to OW-PCA security has 
been clarified. 
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